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ABSTRACT

It has been suggested by some authors that the momentum equation for thermally driven slope flow should
contain a horizontal pressure gradient term, in addition to the buoyancy term. It is shown that this suggestion
is incorrect and leads to a spurious increase in along-slope forcing unless the vertical component of the per-
turbation pressure gradient is included as well. Along-slope accelerations due to the horizontal and vertical
perturbation pressure gradients cancel each other exactly if the temperature perturbation is constant along the
slope. Based on the concept of hydrostatic equilibrium perpendicular to the slope, the error associated with
neglecting the vertical component of the pressure gradient, and the error due to the assumption of vertical
hydrostatic equilibrium are evaluated. A revised conceptual diagram of the relationship between buoyancy and
pressure forces within the slope wind layer is presented.

1. Introduction

In theoretical models of slope flows the primary forc-
ing term in the momentum equation is the along-slope
component of the buoyancy force (Prandtl 1942), with
an additional along-slope pressure gradient term arising
only if the temperature perturbation varies along the
slope (Manins and Sawford 1979). This along-slope
pressure gradient term due to thermal inhomogeneities
has been called the ‘‘thermal wind term’’ by Mahrt
(1982). Some authors, however, maintain that the hor-
izontal pressure gradient needs to be included in the
momentum equation in addition to the buoyancy term,
even in the absence of along-slope perturbation tem-
perature variations (Petkovsek 1982; Kossmann and
Fiedler 2000). The notion that the horizontal hydrostatic
pressure gradient due to the warmer (colder) air at the
slope must cause some additional upslope (downslope)
acceleration is intuitively appealing, and has entered
some conceptual diagrams (e.g., Atkinson 1981, p. 253).
The purpose of this note is to clarify the relationship
between perturbation temperature, buoyancy, and per-
turbation pressure in the slope wind layer. Buoyancy
and pressure gradient forces are derived in two different
ways. The standard formulation, which uses a rotated
coordinate system (s, n), is compared with the ‘‘mixed’’
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approach, which refers to both the (s, n) and the (x, z)
systems, and which has been used by some authors (At-
kinson 1981; Petkovsek 1982; Kossmann and Fiedler
2000). It is shown that a spurious up-slope acceleration
is created by taking into account only the horizontal
component of the perturbation pressure gradient, rather
than the full perturbation pressure gradient. Moreover,
due to the approximate hydrostatic balance that exists
perpendicular to slope, the along-slope pressure gradient
term vanishes identically when there are no thermal in-
homogeneities along the slope (Mahrt 1982).

2. Pressure perturbation and buoyancy

In a standard Cartesian coordinate system, horizontal
and vertical accelerations due to the pressure field and
gravity are given by

du 1 ]p
5 2 , (1)

dt r ]x

dw 1 ]p
5 2 2 g, (2)

dt r ]z

where the usual notation is used. We define a horizon-
tally homogeneous basic state at rest and in hydrostatic
equilibrium. Density variations are neglected except in
the nominator of the buoyancy term, and expressed in
terms of potential temperature perturbations correspond-
ing to the Boussinesq approximation for shallow flow.
Thus, we obtain
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FIG. 1. Conceptual diagram of the combined effect of buoyancy
and perturbation pressure in thermally driven slope flow. Shown are
isolines of potential temperature (thin lines), perturbation pressure
(dashed lines), and pressure (bold lines) for the case of a daytime
up-slope flow with a thermal perturbation that increases along the
slope. Due to this increase, the perturbation pressure gradient gives
a small positive contribution to along-slope acceleration in this case.
Perpendicular to the slope, the flow is quasi-hydrostatically balanced.
In the special case of along-slope thermal homogeneity the dashed
lines would be parallel to the slope, and the perturbation pressure
gradient would be exactly perpendicular to the terrain.

du9 1 ]p9
5 2 , (3)

dt r ]x0

dw9 1 ]p9 u9
5 2 1 g , (4)

dt r ]z u0 0

where the prime denotes perturbation quantities, and the
basic state is indicated by the subscript 0.

a. Buoyancy and pressure terms in rotated
coordinates

The essence of the problem can be discussed by con-
sidering the case of a slope with constant inclination
angle a (Fig. 1). Rotated coordinates are denoted by (s,
n), where s is up-slope distance, and n is the distance
perpendicular to the slope. The corresponding velocity
components are us and wn. Since the rotated coordinate
system is still orthogonal, no metric terms appear, and
the equations equivalent to (3) and (4) take the form

du9 1 ]p9 u9s 5 2 1 g sina, (5)
dt r ]s u0 0

dw9 1 ]p9 u9n 5 2 1 g cosa (6)
dt r ]n u0 0

(e.g., Egger 1981). The only difference compared to the
(x, z) system is that gravity now has components in both
coordinate directions. In vector notation both (3), (4)
and (5), (6) can be written

dv9 1 u9
5 2 =p9 1 g k. (7)

dt r u0 0

b. ‘‘Mixed’’ formulation

Alternatively, the along-slope acceleration can be ex-
pressed as the sum of the horizontal acceleration (3)
multiplied by the cosine of the slope angle, and the
vertical acceleration (4) multiplied by the sine of the
slope angle:

du9 1 ]p9 1 ]p9 u9s 5 2 cosa 2 2 g sina. (8)1 2dt r ]x r ]z u0 0 0

We refer to this form as mixed because an acceleration
in the (s, n) system is expressed in terms of derivatives
in the (x, z) system. Because of

]p9 ]p9 ]p9
5 cosa 1 sina, (9)

]s ]x ]z

the resulting equation is identical to (5), with the two
pressure gradient terms on the rhs of (8) combining to
give the first term on the rhs of (5).

Petkovsek (1982) and Kossmann and Fiedler (2000)
employ the mixed approach, but instead of the full ver-
tical acceleration [the term in parentheses in (8)], they
take into account only the buoyancy term. Their equa-
tions for along-slope acceleration are equivalent to

du9 1 ]p9 u9s 5 2 cosa 1 g sina. (10)
dt r ]x u0 0

The vertical component of the perturbation pressure gra-
dient is missing, which leads to an incorrect along-slope
acceleration. As shown below, the error can be large
and will usually lead to an overestimation of the along-
slope acceleration.

Fleagle (1950), in his theoretical study of slope winds,
also refers to the horizontal pressure gradient as a forc-
ing term. However, he does not include buoyancy and
the horizontal pressure gradient in his momentum equa-
tion but expresses the latter in terms of the temperature
perturbation by assuming vertical hydrostatic equilib-
rium. The effect of this assumption on along-slope ac-
celeration is discussed below. It should be mentioned
that Atkinson (1981), contrary to what is suggested by
his conceptual diagram, does not consider buoyancy and
the horizontal pressure gradient as two independent
terms but rather follows the derivation of Fleagle (1950).

3. Quasi-hydrostatic equilibrium

Up to this point no assumptions in addition to those
of the shallow Boussinesq approximation and constant
slope angle have been made. In order to get a more
specific estimate of the error involved in using (10), we
take into account the fact that slope flows are close to
a state of hydrostatic equilibrium in the direction per-
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pendicular to the ground. Mahrt (1982) introduced the
term ‘‘quasi-hydrostatic’’ to distinguish this particular
balance from the more familiar vertical hydrostatic equi-
librium. Defining an along-slope length scale L, and a
flow depth scale H, it can be shown that the ratio of the
acceleration terms to the buoyancy term in the -equa-w9n
tion of motion (6) is of the order of

dw9 u9 HnO g cosa 5 tana (11)1 @ 2dt u L0

(Mahrt 1982). This ratio is K1 if the slope wind layer
has the characteristics of a boundary layer that is ‘‘thin’’
compared to the radius of curvature of the topographic
profile. This is the case for many real slopes. According
to (11), dynamic pressure effects become significant
only in very steep terrain, or near abrupt changes in
terrain inclination, such as sharp ridges. It should be
noted that we do not consider here the initial, transient
response of the atmosphere to localized diabatic warm-
ing (cooling), namely the formation of a positive (neg-
ative) pressure perturbation in the affected region, and
the generation of thermal compression waves (Nicholls
and Pielke 1994). As is customary in studies of ther-
mally driven slope flows we assume that the fast, com-
pressible mass adjustment has already taken place, and
that pressure perturbations are small outside the slope
wind layer.

If (11) is small, the momentum equation (6) perpen-
dicular to the slope reduces to quasi-hydrostatic equi-
librium

1 ]p9 u9
5 g cosa. (12)

r ]n u0 0

Important consequences of (12) are (a) the pressure per-
turbation field can be derived directly from the tem-
perature perturbation field (and vice versa), regardless
of the flow; (b) if the temperature perturbation is uni-
form in along-slope direction, the along-slope pertur-
bation pressure gradient vanishes, and only the buoy-
ancy term appears on the rhs of (5). As noted by Mahrt
(1982), virtually all theoretical slope wind models are
explicitly or implicitly based on quasi-hydrostatic equi-
librium.

Figure 1 illustrates Eq. (7) under the quasi-hydrostatic
equilibrium assumption for a daytime slope wind layer
that increases in depth along the slope. The primary
along-slope forcing is due to buoyancy. The perturbation
pressure gradient gives a small up-slope contribution in
this case because the temperature perturbation has been
assumed to increase going up the slope. If the positive
temperature perturbation would decrease along the
slope, the pressure gradient would give a negative con-
tribution. In the direction perpendicular to the slope,
buoyancy and the pressure gradient cancel each other
[cf. (12)] so the resulting acceleration vector is parallel
to the surface.

There are two special cases of interest. First, if the

thermal anomaly is constant along the slope, the pres-
sure gradient term is exactly perpendicular to the ground
and does not contribute to along-slope acceleration. This
applies to slope flows in local equilibrium, which have
been studied analytically by Prandtl (1942), and nu-
merically by Schumann (1990). Analysis of observa-
tional data obtained during the Vertical Transport and
Mixing (VTMX) program (Doran et al. 2002) indicates
that katabatic flow close to local equilibrium does in-
deed occur, even on rather low-angle slopes (Haiden
and Whiteman 2002). Second, the opposing perturbation
pressure gradient can become so large that it essentially
reduces the net along-slope forcing to zero. One ex-
ample would be a katabatic flow layer that increases in
depth down the slope at such a rate that its top becomes
more or less horizontal, as happens when downslope
flows converge into a valley or basin to form cold air
pools.

Using (12), and relationships analogous to (9) be-
tween the differentials in both coordinate systems, we
can express incorrect Eq. (10) in the form

du9 1 ]p9 u9s 2 25 2 cos a 1 g sina(1 1 cos a). (13)
dt r ]s u0 0

Comparison with (8) shows that for small slope angles
(a , 108), where cos2 a ø 1, this is roughly equivalent
to double-counting the along-slope component of buoy-
ancy. For steeper slopes, the error depends on the rel-
ative importance of the two forcing terms.

The slope wind layer cannot be at the same time in
vertical hydrostatic equilibrium and quasi-hydrostatic
equilibrium. What happens if a model that is based on
hydrostasy in the vertical,

1 ]p9 u9
5 g , (14)

r ]z u0 0

rather than on (12), is used to compute along-slope ac-
celeration? Fleagle (1950), for example, assumed ver-
tical hydrostatic equilibrium in his theoretical study of
katabatic flows. If hydrostasy is assumed in numerical
simulations of thermally driven flows in complex terrain
it is also usually meant to exist in the vertical. For a
slope flow that is to first-order parallel to the surface,
that is, in which K , the associated error can bew9 u9n s

quantified as follows. We compute the horizontal ac-
celeration from the horizontal momentum equation (3),
and relate the vertical velocity diagnostically to u9 via
the kinematic boundary condition

w9 5 u9 tana. (15)

Using (14), (15), and (9), the hydrostatic along-slope
acceleration can be expressed
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du9 du9 dw9s [ cosa 1 sina1 2dt dt dt
HS

1 ]p9
5 2 (cosa 1 tana sina)

r ]x0

1 ]p9 u9
25 2 1 g (1 1 tan a). (16)1 2r ]s u0 0

Comparison with (5) shows that the assumption of ver-
tical hydrostatic balance creates a spurious along-slope
forcing proportional to tan2a. The error is negligible
for a , 108 but increases rapidly for steeper slopes.
Since tana is the ratio of the vertical to the horizontal
cross section of the slope wind layer, this is a special
case of the general rule that effects associated with de-
viations from vertical hydrostatic equilibrium increase
with the square of the aspect ratio of the flow (e.g.,
Pielke 1984).
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